Find quadratic function given x intercepts calculator

  • Algebra Calculator
  • Practice
  • Lessons
  • Pricing
  • Log In
  • Sign Up

Quadratic Formula Calculator

What do you want to calculate?

Example: 2x^2-5x-3=0

Step-By-Step Example

Learn step-by-step how to use the quadratic formula!


Example (Click to try)

2x2−5x−3=0


About the quadratic formula

Solve an equation of the form ax2+bx+c=0 by using the quadratic formula:

x=

−b±√b2−4ac
2a

Quadratic Formula Video Lesson

Find quadratic function given x intercepts calculator

Solve with the Quadratic Formula Step-by-Step [1:29]

Need more problem types? Try MathPapa Algebra Calculator

  1. Home
  2. Calculators
  3. Calculators: Algebra II
  4. Pre-Calculus Calculator

Find x-intercepts and y-intercepts step by step

The calculator will try to find the x- and y-intercepts of the given function, expression, or equation.

Your input: find the x- and y-intercepts of $$$4 x + 5 y=15$$$

x-intercepts

Plug `y=0` into the equation and solve the resulting equation $$$4 x=15$$$ for `x` (use the equation solver).

The x-intercept:

$$$\left(\frac{15}{4},0\right)$$$

y-intercepts

Plug `x=0` into the equation and solve the resulting equation $$$5 y=15$$$ for `y` (use the equation solver).

The y-intercept:

$$$\left(0, 3\right)$$$

This calculator will find either the equation of the parabola from the given parameters or the vertex, focus, directrix, axis of symmetry, latus rectum, length of the latus rectum, focal parameter, focal length (distance), eccentricity, x-intercepts, y-intercepts, domain, and range of the entered parabola. Also, it will graph the parabola. Steps are available.

Related calculators: Circle Calculator, Ellipse Calculator, Hyperbola Calculator, Conic Section Calculator

Your Input

Find the vertex, focus, directrix, axis of symmetry, latus rectum, length of the latus rectum, focal parameter, focal length, eccentricity, x-intercepts, y-intercepts, domain, and range of the parabola $$$y = \left(x - 2\right)^{2} + 5$$$.

Solution

The equation of a parabola is $$$y = \frac{1}{4 \left(f - k\right)} \left(x - h\right)^{2} + k$$$, where $$$\left(h, k\right)$$$ is the vertex and $$$\left(h, f\right)$$$ is the focus.

Our parabola in this form is $$$y = \frac{1}{4 \left(\frac{21}{4} - 5\right)} \left(x - 2\right)^{2} + 5$$$.

Thus, $$$h = 2$$$, $$$k = 5$$$, $$$f = \frac{21}{4}$$$.

The standard form is $$$y = x^{2} - 4 x + 9$$$.

The general form is $$$x^{2} - 4 x - y + 9 = 0$$$.

The vertex form is $$$y = \left(x - 2\right)^{2} + 5$$$.

The directrix is $$$y = d$$$.

To find $$$d$$$, use the fact that the distance from the focus to the vertex is the same as the distance from the vertex to the directrix: $$$5 - \frac{21}{4} = d - 5$$$.

Thus, the directrix is $$$y = \frac{19}{4}$$$.

The axis of symmetry is the line perpendicular to the directrix that passes through the vertex and the focus: $$$x = 2$$$.

The focal length is the distance between the focus and the vertex: $$$\frac{1}{4}$$$.

The focal parameter is the distance between the focus and the directrix: $$$\frac{1}{2}$$$.

The latus rectum is parallel to the directrix and passes through the focus: $$$y = \frac{21}{4}$$$.

The endpoints of the latus rectum can be found by solving the system $$$\begin{cases} x^{2} - 4 x - y + 9 = 0 \\ y = \frac{21}{4} \end{cases}$$$ (for steps, see system of equations calculator).

The endpoints of the latus rectum are $$$\left(\frac{3}{2}, \frac{21}{4}\right)$$$, $$$\left(\frac{5}{2}, \frac{21}{4}\right)$$$.

The length of the latus rectum is four times the distance between the vertex and the focus: $$$1$$$.

The eccentricity of a parabola is always $$$1$$$.

The x-intercepts can be found by setting $$$y = 0$$$ in the equation and solving for $$$x$$$ (for steps, see intercepts calculator).

Since there are no real solutions, there are no x-intercepts.

The y-intercepts can be found by setting $$$x = 0$$$ in the equation and solving for $$$y$$$: (for steps, see intercepts calculator).

y-intercept: $$$\left(0, 9\right)$$$.

Answer

Standard form: $$$y = x^{2} - 4 x + 9$$$A.

General form: $$$x^{2} - 4 x - y + 9 = 0$$$A.

Vertex form: $$$y = \left(x - 2\right)^{2} + 5$$$A.

Focus-directrix form: $$$\left(x - 2\right)^{2} + \left(y - \frac{21}{4}\right)^{2} = \left(y - \frac{19}{4}\right)^{2}$$$A.

Graph: see the graphing calculator.

Vertex: $$$\left(2, 5\right)$$$A.

Focus: $$$\left(2, \frac{21}{4}\right) = \left(2, 5.25\right)$$$A.

Directrix: $$$y = \frac{19}{4} = 4.75$$$A.

Axis of symmetry: $$$x = 2$$$A.

Latus rectum: $$$y = \frac{21}{4} = 5.25$$$A.

Endpoints of the latus rectum: $$$\left(\frac{3}{2}, \frac{21}{4}\right) = \left(1.5, 5.25\right)$$$, $$$\left(\frac{5}{2}, \frac{21}{4}\right) = \left(2.5, 5.25\right)$$$A.

Length of the latus rectum: $$$1$$$A.

Focal parameter: $$$\frac{1}{2} = 0.5$$$A.

Focal length: $$$\frac{1}{4} = 0.25$$$A.

Eccentricity: $$$1$$$A.

x-intercepts: no x-intercepts.

y-intercept: $$$\left(0, 9\right)$$$A.

Domain: $$$\left(-\infty, \infty\right)$$$A.

Range: $$$\left[5, \infty\right)$$$A.