The retina is to the eye as the

  • Dowling, J. E. in Encyclopedia of the Human Brain, Vol. 4 (ed. Ramachandran, V.) 217–235 (Academic Press, San Diego, 2002).

    Book  Google Scholar 

  • Berson, D. M. in The Senses: A Comprehensive Reference, Vol. 1 (eds Basbaum, A. I. et al.) 491–519 (Elsevier, New York, 2008).

    Book  Google Scholar 

  • Faden, A. I. & Salzman, S. Pharmacological strategies in CNS trauma. Trends Pharmacol. Sci. 13, 29–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, M., Belkin, M., Yoles, E. & Solomon, A. Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J. Glaucoma 5, 427–432 (1996).

    CAS  PubMed  Google Scholar 

  • Crowe, M. J., Bresnahan, J. C., Shuman, S. L., Masters, J. N. & Beattie, M. S. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat. Med. 3, 73–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Levkovitch-Verbin, H. et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 42, 975–982 (2001).

    CAS  PubMed  Google Scholar 

  • Levkovitch-Verbin, H. et al. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest. Ophthalmol. Vis. Sci. 44, 3388–3393 (2003).

    Article  PubMed  Google Scholar 

  • Yoles, E. & Schwartz, M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp. Neurol. 153, 1–7 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Benowitz, L. & Yin, Y. Rewiring the injured CNS: lessons from the optic nerve. Exp. Neurol. 209, 389–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Sanz, M., Bray, G. M., Villegas-Perez, M. P., Thanos, S. & Aguayo, A. J. Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keirstead, S. A. et al. Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246, 255–257 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Villegas-Perez, M. P., Vidal-Sanz, M., Bray, G. M. & Aguayo, A. J. Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8, 265–280 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moalem, G. et al. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med. 5, 49–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kipnis, J. et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc. Natl Acad. Sci. USA 97, 7446–7451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lingor, P. et al. Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J. Neurochem. 103, 181–189 (2007).

    CAS  PubMed  Google Scholar 

  • Schwab, M. E. Nogo and axon regeneration. Curr. Opin. Neurobiol. 14, 118–124 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lehmann, M. et al. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J. Neurosci. 19, 7537–7547 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer, D., He, Z. & Benowitz, L. I. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24, 1646–1651 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Rolls, A. et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 5, e171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  • Filbin, M. T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  • David, S. & Aguayo, A. J. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Streilein, J. W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Kaur, C., Foulds, W. S. & Ling, E. A. Blood–retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management. Prog. Retin. Eye Res. 27, 622–647 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wilbanks, G. A. & Streilein, J. W. Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-β. Eur. J. Immunol. 22, 1031–1036 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Taylor, A. W. & Streilein, J. W. Inhibition of antigen-stimulated effector T cells by human cerebrospinal fluid. Neuroimmunomodulation 3, 112–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Cheung, N. et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study. Brain 133, 1987–1993 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, T. Y. et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. Lancet 358, 1134–1140 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wong, T. Y. et al. Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality. Surv. Ophthalmol. 46, 59–80 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wong, T. Y. et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke. JAMA 288, 67–74 (2002).

    Article  PubMed  Google Scholar 

  • Kalesnykas, G., Tuulos, T., Uusitalo, H. & Jolkkonen, J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 155, 937–947 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Baker, M. L., Hand, P. J., Wang, J. J. & Wong, T. Y. Retinal signs and stroke: revisiting the link between the eye and brain. Stroke 39, 1371–1379 (2008).

    Article  PubMed  Google Scholar 

  • Patton, N. et al. Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J. Anat. 206, 319–348 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Wardlaw, J. M. et al. Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Ann. Neurol. 65, 194–202 (2009).

    Article  PubMed  Google Scholar 

  • Wardlaw, J. M., Sandercock, P. A., Dennis, M. S. & Starr, J. Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 34, 806–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz, U. & Alter, M. Optic nerve involvement and diplopia as initial manifestations of multiple sclerosis. Acta Neurol. Scand. 44, 70–80 (1968).

    Article  CAS  PubMed  Google Scholar 

  • McDonald, W. I. & Barnes, D. The ocular manifestations of multiple sclerosis. 1. Abnormalities of the afferent visual system. J. Neurol. Neurosurg. Psychiatry 55, 747–752 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen, T. L., Frederiksen, J. L., Bronnum-Hansen, H. & Petersen, H. C. Optic neuritis as onset manifestation of multiple sclerosis: a nationwide, long-term survey. Neurology 53, 473–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Patel, S. J. & Lundy, D. C. Ocular manifestations of autoimmune disease. Am. Fam. Physician 66, 991–998 (2002).

    PubMed  Google Scholar 

  • Soderstrom, M. Optic neuritis and multiple sclerosis. Acta Ophthalmol. Scand. 79, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi, A. et al. Long-term follow-up of isolated optic neuritis: the risk of developing multiple sclerosis, its outcome, and the prognostic role of paraclinical tests. J. Neurol. 246, 770–775 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Firth, D. The case of Augustus d'Este (1794–1848): the first account of disseminated sclerosis: (Section of the History of Medicine). Proc. R. Soc. Med. 34, 381–384 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, J. B. et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 113, 324–332 (2006).

    Article  PubMed  Google Scholar 

  • Monteiro, M. L., Fernandes, D. B., Apostolos-Pereira, S. L. & Callegaro, D. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using fourier-domain optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 53, 3959–3966 (2012).

    Article  PubMed  Google Scholar 

  • Green, A. J., McQuaid, S., Hauser, S. L., Allen, I. V. & Lyness, R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 133, 1591–1601 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerrison, J. B., Flynn, T. & Green, W. R. Retinal pathologic changes in multiple sclerosis. Retina 14, 445–451 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Gundogan, F. C., Tas, A., Erdem, U. & Sobaci, G. Retinal pathology in multiple sclerosis: insight into the mechanisms of neuronal pathology. Brain 134, e171; author reply e172 (2011).

    Article  PubMed  Google Scholar 

  • Masson, G., Mestre, D. & Blin, O. Dopaminergic modulation of visual sensitivity in man. Fundam. Clin. Pharmacol. 7, 449–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Santano, C., Pérez de Lara, M. & Pintor, J. in Studies on Experimental Models (eds Basu, S. & Wiklund, L.) 221–250 (Humana Press, New York, 2011).

    Book  Google Scholar 

  • Archibald, N. K., Clarke, M. P., Mosimann, U. P. & Burn, D. J. The retina in Parkinson's disease. Brain 132, 1128–1145 (2009).

    Article  PubMed  Google Scholar 

  • Devos, D. et al. ERG and anatomical abnormalities suggesting retinopathy in dementia with Lewy bodies. Neurology 65, 1107–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Moschos, M. M. et al. Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur. J. Ophthalmol. 21, 24–29 (2011).

    Article  PubMed  Google Scholar 

  • Inzelberg, R., Ramirez, J. A., Nisipeanu, P. & Ophir, A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 44, 2793–2797 (2004).

    Article  PubMed  Google Scholar 

  • Altintas, O., Iseri, P., Ozkan, B. & Caglar, Y. Correlation between retinal morphological and functional findings and clinical severity in Parkinson's disease. Doc. Ophthalmol. 116, 137–146 (2008).

    Article  PubMed  Google Scholar 

  • Hajee, M. E. et al. Inner retinal layer thinning in Parkinson disease. Arch. Ophthalmol. 127, 737–741 (2009).

    Article  PubMed  Google Scholar 

  • Onofrj, M., Ghilardi, M. F., Basciani, M. & Gambi, D. Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J. Neurol. Neurosurg. Psychiatry 49, 1150–1159 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu, K. et al. Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina? Age (Dordr.) 34, 633–649 (2012).

    Article  CAS  Google Scholar 

  • Guo, L., Duggan, J. & Cordeiro, M. F. Alzheimer's disease and retinal neurodegeneration. Curr. Alzheimer Res. 7, 3–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Danesh-Meyer, H. V., Birch, H., Ku, J. Y., Carroll, S. & Gamble, G. Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67, 1852–1854 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hinton, D. R., Sadun, A. A., Blanks, J. C. & Miller, C. A. Optic-nerve degeneration in Alzheimer's disease. N. Engl. J. Med. 315, 485–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  • Blanks, J. C., Hinton, D. R., Sadun, A. A. & Miller, C. A. Retinal ganglion cell degeneration in Alzheimer's disease. Brain Res. 501, 364–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Blanks, J. C., Torigoe, Y., Hinton, D. R. & Blanks, R. H. Retinal pathology in Alzheimer's disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol. Aging 17, 377–384 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Blanks, J. C. et al. Retinal pathology in Alzheimer's disease. II. Regional neuron loss and glial changes in GCL. Neurobiol. Aging 17, 385–395 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Parisi, V. et al. Morphological and functional retinal impairment in Alzheimer's disease patients. Clin. Neurophysiol. 112, 1860–1867 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Berisha, F., Feke, G. T., Trempe, C. L., McMeel, J. W. & Schepens, C. L. Retinal abnormalities in early Alzheimer's disease. Invest. Ophthalmol. Vis. Sci. 48, 2285–2289 (2007).

    Article  PubMed  Google Scholar 

  • Iseri, P. K., Altinas, O., Tokay, T. & Yuksel, N. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J. Neuroophthalmol. 26, 18–24 (2006).

    Article  PubMed  Google Scholar 

  • Sadun, A. A. & Bassi, C. J. Optic nerve damage in Alzheimer's disease. Ophthalmology 97, 9–17 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, L. E. et al. Cytosolic β-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer's disease. Lancet 361, 1258–1265 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ning, A., Cui, J., To, E., Ashe, K. H. & Matsubara, J. Amyloid-β deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest. Ophthalmol. Vis. Sci. 49, 5136–5143 (2008).

    Article  PubMed  Google Scholar 

  • Liu, B. et al. Amyloid-peptide vaccinations reduce β-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer's transgenic mice. Am. J. Pathol. 175, 2099–2110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparini, L. et al. Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol. Aging 32, 419–433 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Koronyo-Hamaoui, M. et al. Identification of amyloid plaques in retinas from Alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54 (Suppl. 1), S204–S217 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Buggage, R. R., Chan, C. C. & Nussenblatt, R. B. Ocular manifestations of central nervous system lymphoma. Curr. Opin. Oncol. 13, 137–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Buckingham, B. P. et al. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J. Neurosci. 28, 2735–2744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calkins, D. J. A neurological perspective on glaucoma. Glaucoma Today [online], (2008).

    Google Scholar 

  • Jakobs, T. C., Libby, R. T., Ben, Y., John, S. W. & Masland, R. H. Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J. Cell Biol. 171, 313–325 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak, H. & Del Tredici, K. Nervous system pathology in sporadic Parkinson disease. Neurology 70, 1916–1925 (2008).

    Article  PubMed  Google Scholar 

  • Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298, 789–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Fischer, L. R. & Glass, J. D. Axonal degeneration in motor neuron disease. Neurodegener. Dis. 4, 431–442 (2007).

    Article  PubMed  Google Scholar 

  • Gupta, N. & Yucel, Y. H. Glaucoma as a neurodegenerative disease. Curr. Opin. Ophthalmol. 18, 110–114 (2007).

    Article  PubMed  Google Scholar 

  • Yucel, Y. & Gupta, N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog. Brain Res. 173, 465–478 (2008).

    Article  PubMed  Google Scholar 

  • Yin, H., Chen, L., Chen, X. & Liu, X. Soluble amyloid β oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med. Hypotheses 71, 77–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Janciauskiene, S. & Krakau, T. Alzheimer's peptide: a possible link between glaucoma, exfoliation syndrome and Alzheimer's disease. Acta Ophthalmol. Scand. 79, 328–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Yoneda, S. et al. Vitreous fluid levels of β-amyloid(1–42) and tau in patients with retinal diseases. Jpn J. Ophthalmol. 49, 106–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Gupta, N., Fong, J., Ang, L. C. & Yucel, Y. H. Retinal tau pathology in human glaucomas. Can. J. Ophthalmol. 43, 53–60 (2008).

    Article  PubMed  Google Scholar 

  • Goldblum, D., Kipfer-Kauer, A., Sarra, G. M., Wolf, S. & Frueh, B. E. Distribution of amyloid precursor protein and amyloid-β immunoreactivity in DBA/2J glaucomatous mouse retinas. Invest. Ophthalmol. Vis. Sci. 48, 5085–5090 (2007).

    Article  PubMed  Google Scholar 

  • Guo, L. et al. Targeting amyloid-β in glaucoma treatment. Proc. Natl Acad. Sci. USA 104, 13444–13449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, L. V. et al. The Alzheimer's Aβ-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc. Natl Acad. Sci. USA 99, 11830–11835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dentchev, T., Milam, A. H., Lee, V. M., Trojanowski, J. Q. & Dunaief, J. L. Amyloid-β is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol. Vis. 9, 184–190 (2003).

    CAS  PubMed  Google Scholar 

  • Yoshida, T. et al. The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J. Clin. Invest. 115, 2793–2800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isas, J. M. et al. Soluble and mature amyloid fibrils in drusen deposits. Invest. Ophthalmol. Vis. Sci. 51, 1304–1310 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Mullins, R. F., Russell, S. R., Anderson, D. H. & Hageman, G. S. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Luibl, V. et al. Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J. Clin. Invest. 116, 378–385 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klomp, L. W. & Gitlin, J. D. Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia. Hum. Mol. Genet. 5, 1989–1996 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Ke, Y. & Ming Qian, Z. Iron misregulation in the brain: a primary cause of neurodegenerative disorders. Lancet Neurol. 2, 246–253 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser, H. et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63, 1912–1917 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Farkas, R. H. et al. Increased expression of iron-regulating genes in monkey and human glaucoma. Invest. Ophthalmol. Vis. Sci. 45, 1410–1417 (2004).

    Article  PubMed  Google Scholar 

  • Levin, L. A. & Geszvain, K. M. Expression of ceruloplasmin in the retina: induction after optic nerve crush. Invest. Ophthalmol. Vis. Sci. 39, 157–163 (1998).

    CAS  PubMed  Google Scholar 

  • Ishiura, H. et al. Posterior column ataxia with retinitis pigmentosa in a Japanese family with a novel mutation in FLVCR1. Neurogenetics 12, 117–121 (2011).

    Article  PubMed  Google Scholar 

  • Rajadhyaksha, A. M. et al. Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa. Am. J. Hum. Genet. 87, 643–654 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • London, A. et al. Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages. J. Exp. Med. 208, 23–39 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shechter, R. et al. Toll-like receptor 4 restricts retinal progenitor cell proliferation. J. Cell Biol. 183, 393–400 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoles, E. et al. Protective autoimmunity is a physiological response to CNS trauma. J. Neurosci. 21, 3740–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anchan, R. M., Reh, T. A., Angello, J., Balliet, A. & Walker, M. EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6, 923–936 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Yin, Y. et al. Oncomodulin links inflammation to optic nerve regeneration. Proc. Natl Acad. Sci. USA 106, 19587–19592 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaverucha-do-Valle, C. et al. Bone marrow mononuclear cells increase retinal ganglion cell survival and axon regeneration in the adult rat. Cell Transplant. 20, 391–406 (2011).

    Article  PubMed  Google Scholar 

  • Wong, T. Y. Is retinal photography useful in the measurement of stroke risk? Lancet Neurol. 3, 179–183 (2004).

    Article  PubMed  Google Scholar 

  • De Silva, D. A. et al. Retinal microvascular changes and subsequent vascular events after ischemic stroke. Neurology 77, 896–903 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Frohman, E. M., Balcer, L. J. & Calabresi, P. A. Multiple sclerosis: can retinal imaging accurately detect optic neuritis? Nat. Rev. Neurol. 6, 125–126 (2010).

    Article  PubMed  Google Scholar 

  • Naismith, R. T. et al. Optical coherence tomography is less sensitive than visual evoked potentials in optic neuritis. Neurology 73, 46–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petzold, A. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 9, 921–932 (2010).

    Article  PubMed  Google Scholar 

  • Henderson, A. P. et al. An investigation of the retinal nerve fibre layer in progressive multiple sclerosis using optical coherence tomography. Brain 131, 277–287 (2008).

    PubMed  Google Scholar 

  • Gordon-Lipkin, E. et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 69, 1603–1609 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Grazioli, E. et al. Retinal nerve fiber layer thickness is associated with brain MRI outcomes in multiple sclerosis. J. Neurol. Sci. 268, 12–17 (2008).

    Article  PubMed  Google Scholar 

  • Lennon, V. A. et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364, 2106–2112 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Ratchford, J. N. et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73, 302–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, M. et al. Early high-dose intravenous methylprednisolone is effective in preserving retinal nerve fiber layer thickness in patients with neuromyelitis optica. Graefes Arch. Clin. Exp. Ophthalmol. 248, 1777–1785 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Naismith, R. T. et al. Optical coherence tomography differs in neuromyelitis optica compared with multiple sclerosis. Neurology 72, 1077–1082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesler, A., Vakhapova, V., Korczyn, A. D., Naftaliev, E. & Neudorfer, M. Retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Clin. Neurol. Neurosurg. 113, 523–526 (2011).

    Article  PubMed  Google Scholar 

  • Paquet, C. et al. Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer's disease. Neurosci. Lett. 420, 97–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Melnikova, I. Therapies for Alzheimer's disease. Nat. Rev. Drug Discov. 6, 341–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Ding, J. D. et al. Anti-amyloid therapy protects against retinal pigmented epithelium damage and vision loss in a model of age-related macular degeneration. Proc. Natl Acad. Sci. USA 108, E279–E287 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, J. D. et al. Targeting age-related macular degeneration with Alzheimer's disease based immunotherapies: anti-amyloid-β antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res. 48, 339–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Niikura, T., Hashimoto, Y., Tajima, H. & Nishimoto, I. Death and survival of neuronal cells exposed to Alzheimer's insults. J. Neurosci. Res. 70, 380–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Men, J., Zhang, X., Yang, Y. & Gao, D. An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl2-induced apoptosis. J. Mol. Neurosci. 47, 144–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Frenkel, D., Maron, R., Burt, D. S. & Weiner, H. L. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears β-amyloid in a mouse model of Alzheimer disease. J. Clin. Invest. 115, 2423–2433 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel, D. et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J. Immunol. 171, 6549–6555 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Ben Simon, G. J., Bakalash, S., Aloni, E. & Rosner, M. A rat model for acute rise in intraocular pressure: immune modulation as a therapeutic strategy. Am. J. Ophthalmol. 141, 1105–1111 (2006).

    Article  PubMed  Google Scholar 

  • Schori, H. et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc. Natl Acad. Sci. USA 98, 3398–3403 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitne, S. et al. The potential neuroprotective effects of weekly treatment with glatiramer acetate in diabetic patients after panretinal photocoagulation. Clin. Ophthalmol. 5, 991–997 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • US National Library of Medicine. A randomized, double-blind, placebo-controlled, multicenter study of the effects of glatiramer acetate (GA) on the retinal nerve fiber layer (RNFL) and visual function in patients with a first episode of acute optic neuritis (AON). US National Library of Medicine. ClinicalTrials.gov[online], (2011).

  • US National Library of Medicine. Copaxone in age related macular degeneration. ClinicalTrials.gov[online], (2007).

  • US National Library of Medicine. Weekly vaccination with copaxone as a potential therapy for dry age-related macular degeneration. ClinicalTrials.gov [online], (2008).

  • Yucel, Y. H. et al. Memantine protects neurons from shrinkage in the lateral geniculate nucleus in experimental glaucoma. Arch. Ophthalmol. 124, 217–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  • [No authors listed] Allergan reports fourth quarter operating results and announces restructuring. Allergan.com [online], (2008).

  • Samples, J. R. in Ophthalmology Management (Wolters Kluwer Pharma Solutions Inc., Ambler, PA, 2011).

    Google Scholar 

  • Wostyn, P., Audenaert, K. & De Deyn, P. P. Alzheimer's disease: cerebral glaucoma? Med. Hypotheses 74, 973–977 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Related Posts

    Toplist

    Latest post

    TAGs